MIDTERM: BMATH TOPOLOGY

Date: 27th February 2020

The Total points is **108** and the maximum you can score is **100** points.

- (7+7+7+7=28 points) Answer the following multiple choice questions about each of them. Write all correct options. No justification needed. No partial credit will be given if a correct option is missing or an incorrect option is written.
 - (a) Let A and B be two infinite sets with $|A| \leq |B|$ where |A| denote the cardinality of A. Which of the following statements are true?
 - (i) $|A \cup B| = |B|$.
 - (ii) $|A \times B| > |B|$.
 - (iii) $|A^B| > |B|$.
 - (iv) $|A^B| > |A \times B|$
 - (b) Let (X, \mathscr{T}) be a topological space. Which of the following are true?
 - (i) If \mathscr{B}_1 and \mathscr{B}_2 are basis of \mathscr{T} then $\mathscr{B}_1 \cup \mathscr{B}_2$ is a basis of \mathscr{T} .
 - (ii) If \mathscr{B}_1 and \mathscr{B}_2 are basis of \mathscr{T} then $\mathscr{B}_1 \cap \mathscr{B}_2$ is a basis of \mathscr{T} .
 - (iii) Let \$\mathcal{B}_1\$ be a basis of \$\mathcal{T}\$ and \$\mathcal{B}'\$ be a basis of a topology \$\mathcal{T}'\$ on \$X\$. If \$\mathcal{T}'\$ is finer that \$\mathcal{T}\$ then \$\mathcal{B}'\$ contains \$\mathcal{B}\$.
 - (iv) If \mathscr{B} is a basis of X and Y is a subspace of X then the collection $\{B \cap Y : B \in \mathscr{B}\}$ is a basis of Y.
 - (c) Let $f: X \to Y$ be a function between topological spaces. Which of the following are true?
 - (i) If X has discrete topology then f is continuous.
 - (ii) If Y has discrete topology then f is continuous.
 - (iii) If f is bijective and continuous then X is hausdorff if and only if Y is hausdorff.
 - (iv) If Y is discrete and f is bijective and continuous X is discrete. (d) Let X and Y be topological spaces.
 - (i) If X is Hausdorff and Y is a subspace then Y is Hausdorff.
 - (ii) If X and Y are Hausdorff then $X \times Y$ is Hausdorff.
 - (iii) If Y is a quotient space of X and X is Hausdorff then Y is Hausdorff.
 - (iv) If X and Y satisfy T_1 axiom then $X \times Y$ satisfy T_1 axiom.
- (2) (4+8=12 points) Let X be a topological space and A be a subset of X. Define an accumulation point of A. Let A' denote the set of accumulation points of A. Prove or disprove A' is a closed set.

MIDTERM: BMATH TOPOLOGY

- (3) (20 points) Consider \mathbb{R}^2 with lexicographic ordering ((1, 2) < (2, 1)). When is a subset U of \mathbb{R}^2 open in the order topology? Let π_1 and π_2 be the first and second projection maps to \mathbb{R} . Let $i_1(x) = (x, 0)$ and $i_2(x) = (0, x)$ be maps from \mathbb{R} to \mathbb{R}^2 . When \mathbb{R} is given the standard topology and \mathbb{R}^2 the order topology which of these maps are continuous? Which among those are open?
- (4) (14 points) Let \mathbb{R}^{ω} be the product of countable copies of \mathbb{R} and \mathbb{R}^{∞} be the subset consisting of sequences (x_n) where only finitely many x_n 's are non zero. Compute the closure of \mathbb{R}^{∞} in \mathbb{R}^{ω} when \mathbb{R}^{ω} has (a) the product topology and (b) the box topology.
- (5) (4+5+5=14 points) When is a topological space called first countable? Show that a metric space is a first countable space. Give an example of a first countable space which satify T_1 axiom but is not a metric space?
- (6) (4+8+8=20 points) Let $p: X \to Y$ be map of topological spaces. When is p called a quotient map? Let $p: X \to Y$ be a continuous map and $s: Y \to X$ be continuous fuction such that $p \circ s$ is identity map. Show that p is a quotient map.

On \mathbb{R}^2 with standard topology, define an equivalence relation as follows:

$$(x,y) \sim (x',y')$$
 if $x^3 + y = x'^3 + y'$

Let $X = \mathbb{R}^2 / \sim$ be the quotient space. Show that X is homeomorphic to \mathbb{R} with standard topology.